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Abstract

We introduce a completely consistent method for variable selection with high dimensional datasets. The
method is presented in a framework where latent factors are estimated for the purpose of dimension reduction,
and is meant to serve as a complement to extant methods. We argue that the method is of particular
interest in empirical settings where there may be many irrelevant predictor variables. The reason for this
is that situations where there are “too many”irrelevant variables can lead to inconsistent factor estimates.
Interestingly, our method yields a consistent estimate of the number of such irrelevant variables, which
can aid the applied practitioner in assessing the strength of the underlying factor structure for a particular
application. We also show that when factors constructed using our variable selection method are inputted into
the forecast equations implied by a factor augmented vector autoregressive (FAVAR) model for the purpose
of forecasting, the conditional mean forecast equations can be consistently estimated. Monte Carlo results
are presented indicating that the variable selection method performs well in finite samples. The paper also
contains two empirical illustrations, where we compare forecasts constructed from factor-augmented forecast
equations using our variable selection procedure with two alternative methods for factor construction - the
conventional PCA procedure, which does not pre-screen the variables, and a hard thresholding method that
is widely used in the empirical literature. Overall, we find that our method to outperform both of these
alternative procedures in a majority of the cases that we study across different target variables, forecast
horizons, and data window specifications (i.e., recursive or rolling).
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1 Introduction

In this paper, we propose a simple to implement and completely consistent method for variable

selection when estimating factors for use in dimension reduction and factor augmented vector

autoregression (FAVAR) forecasting with high dimensional datasets. Our method is meant to add

to variable selection methods available to empirical practitioners that have been introduced in recent

papers, including those due to Bair, Hastie, Paul, and Tibshirani (2006), Bai and Ng (2008), Giglio,

Xiu, and Zhang (2023a,b), among others. In addition, our method builds on previous supervised

machine learning approaches that are now widely used in the literature, including, and not limited

to principal components analysis (PCA), sparse, and supervised PCA (see, e.g. Zou, Hastie, and

Tibshirani (2006), Barshan, Ghodsi, Azimifar, and Jahromi (2011), Carrasco and Rossi (2016), and

Fan, Ke and Liao (2021)); bagging, boosting, and random forest (see, e.g. Breiman (1996), Freund

and Schapire (1997), Breiman (2001), Lee and Yang (2006), Lee, Ullah, and Wang (2020), and the

references cited therein); and regression methods such as the elastic net, garrote, and lasso (see

e.g. Breiman (1995), Tibshirani (1996), Zou and Hastie (2005), Kim and Swanson (2014), Belloni,

Chernozhukov, and Wang (2014), and the references cited therein).

The variable selection procedure introduced here seeks to identify and eliminate those irrelevant

variables which do not load on any of the underlying factors so that only relevant variables which

contain information about at least one of the latent factors are used in factor estimation.1 This

is of importance because the use of irrelevant variables in extracting the latent factors could lead

to less accuracy since these variables contribute only noise but not signal to the factor estimation

process. Although variable selection procedures for factor estimation have also been studied in the

well-known paper by Bair, Hastie, Paul, and Tibshirani (2006) on supervised principal component

methods and in some interesting recent papers by Giglio, Xiu, and Zhang (2023a,b), a notable

difference between our selection method and those proposed in these other papers is our use of a

self-normalized statistic. A key attribute of self-normalized statistics is that their tail behavior can

be better approximated over a wider range, using moderate deviation results, than statistics which

are not self-normalized, as we will explain in greater details in Section 2 of the paper. This, in

turn, allows us to specify our decision rule in such a way so that our procedure will be completely

1Although we interpret our variable selection procedure primarily as a procedure which selects variables on the
basis of relevance, it should be noted that in a forecasting context the procedure considered here can also be useful for
assessing whether a particular variable has predictive content for the target variable of interest. Please see Remark
2.2 for a detailed discussion about the close relationship between the relevance and the predictive content of a variable
in the context of a FAVAR model and how a score statistic can be useful in assessing both.
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consistent in the sense that the probability of Type I and Type II errors will both go to zero as

sample sizes approach infinity2.

An important added value of our completely consistent variable selection procedure is that

it enables us to construct a consistent estimator N̂1 of N1 (the number of relevant variables) in

the sense that N̂1/N1
p→ 1. As explained in Section 2 of this paper, since N1 is itself not directly

observable, having a consistent estimator N̂1 provides empirical researchers with a useful diagnostic

statistic which can help them assess the overall pervasiveness of the factors in empirical applications.

As discussed in Section 2, consistent estimation of N1 will not be possible if one does not have a

selection method where the probability of a Type II error approaches zero asymptotically. In

addition, we will also not be able to consistently estimate N1 if the probability of a Type I error

is not controlled to vanish asymptotically, except in the special case where N2, the number of

irrelevant variables, is negligible relative to N1 ( i.e., the case where N2/N1 → 0). However, if

N2/N1 → 0 then forecast results based on use of our procedure should not be much different from

forecast results obtained from the use of conventional PCA (where no variable pre-screening is

conducted). This does not seem to be the case, in particular, for the FRED-MD dataset that we

examine in an empirical illustration (see Section 5 for further details).3

To properly control the probability of a Type I error in our setup, we leverage on some important

advances in moderate deviation results for weakly dependent processes obtained recently by Chen,

Shao, Wu, and Xu (2016). In the context of the moderate deviation theory used here, a further

advantage of self-normalized statistics is that relative to their non-self-normalized counterparts,

statistics which are self-normalized are more able to accommodate situations where the underlying

distribution of the data may have thicker tails. Hence, moderate deviation results for self-normalized

statistics require weaker moment conditions than statistics which are not self-normalized.

In addition to proposing a new variable selection method and showing its complete consistency,

we also make a number of contributions to the methodology of carrying out forecasting in a dy-

namic factor-augmented modeling framework. More specifically, within a general FAVAR setup,

which allows time series forecasts to be made using information sets much richer than that used in

traditional VAR models, we provide an easy-to-implement formula for the post-variable-selection

principal component estimator of the vector of factors. We then show that this post-variable-

selection factor estimator can consistently estimate the true factors up to an invertible matrix

2Here, we take Type I error to be the error that an irrelevant variable is falsely selected as a relevant variable,
whereas Type II error is the error of misclassifying a relevant variable as being irrelevant.

3A formal proof of the consistency of N̂1 is given in part (a) of Lemma C-15 of the Technical Appendix. In
addition, we also provide in Section 2 of the paper some intuitive discussion about why having both the probability
of a Type I error and that of a Type II error vanish asymptotically is important for the consistency of N̂1. Please
see, in particular, Example 2 given in Remark 2.3.
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transformation even if we do not impose the kind of normalization conditions on the factors and

the factor loadings that are typically made in the literature; see, for example, Stock and Watson

(2002a). Moreover, we explicitly derive a closed-form representation for the system of h-step ahead

forecasting equations implied by a FAVAR model and show that, by inserting our post-variable-

selection factor estimates into the h-step ahead forecasting equations, we can consistently estimate

the conditional mean function of the said equations; and this is true even if we do not make strong

enough identifying assumptions so that the factors can only be consistently estimated up to an

invertible matrix transformation.

Besides our theoretical results, we also present Monte Carlo results which indicate that the

finite sample performance of our variable selection procedure is in accord with the results of our

asymptotic analysis. In particular, when the sample sizes are large, such as the case where T = 600

and N = 1000, then results of our simulation study show that both Type I and Type II error

rates are very close to zero. Moreover, even in the smaller sample case where T = 100 and

N = 100, the Type I and Type II error rates are usually less than 0.05, and are often much smaller

than that. In addition we carry out two small forecasting exercises to illustrate the empirical

relevance of our procedure. The first uses a variety of macroeconomic variables from the well-

known FRED-MD database and the second employs data from an updated version of the GVAR

dataset previously studied in Dees, di Mauro, Pesaran, and Smith (2007) and Pesaran, Schuermann,

and Smith (2009). In both empirical illustrations, we compare forecasts constructed from factor-

augmented forecast equations using our variable selection procedure with two alternative methods

for factor construction (the conventional PCA procedure, which does not pre-screen the variables,

and a hard thresholding method that is widely used in the empirical literature). Overall, we find

our method to outperform both of these alternative procedures in a majority of the cases that

we study across different target variables, forecast horizons, and data window specifications (i.e.,

recursive or rolling). We believe that our results indicate the potential usefulness of our method in

empirical applications.

The rest of the paper is organized as follows. In Section 2, we discuss the FAVAR model and

the assumptions that we impose on this model. We also describe our variable selection procedure

and provide theoretical results establishing the complete consistency of the procedure. Section 3

provides theoretical results on the consistent estimation of latent factors, up to an invertible matrix

transformation, as well as results on the consistent estimation of the h-step ahead predictor, based

on the FAVAR model. Section 4 presents the results of a promising Monte Carlo study on the

finite sample performance of our variable selection method, and makes recommendations regarding

the calibration of the tuning parameter used in said method. Section 5 presents the results of two

empirical applications comparing forecast results based on our method with those obtained from
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PCA and the hard thresholding method of Bai and Ng (2008). Finally, Section 6 offers concluding

remarks. Proofs of the main theorems as well as additional supporting lemmas are given in a

separate Technical Appendix.4 The Technical Appendix is organized into three subappendices.

Appendix A provides proofs of the main theorems. Appendix B contains proofs of supporting

lemmas, used primarily in the proofs of Theorems 1 and 2, and Appendix C contains the proofs of

supporting lemmas used primarily in the proofs of Theorems 3 and 4.

Before proceeding, we first say a few words about some of the notation used in this paper.

Throughout, let λ(j) (A), λmax (A), λmin (A), and tr (A) denote, respectively, the jth largest eigen-

value, the maximal eigenvalue, the minimal eigenvalue, and the trace of a square matrix A. Sim-

ilarly, let σ(j) (B), σmax (B), and σmin (B) denote, respectively, the jth largest singular value, the

maximal singular value, and the minimal singular value of a matrix B, which is not restricted to

be a square matrix. In addition, let ‖a‖2 denote the usual Euclidean norm when applied to a (finite-
dimensional) vector a. Also, for a matrixA, ‖A‖2 ≡ max

{√
λ (A′A) : λ (A′A) is an eigenvalue of A′A

}
denotes the matrix spectral norm, and ‖A‖F ≡

√
tr {A′A} denotes the Frobenius norm. For two

random variables X and Y , write X ∼ Y, if X/Y = Op (1) and Y/X = Op (1). Furthermore, let |z|
denote the absolute value or the modulus of the number z; let b·c denote the floor function, so that,
for a real number x, bxc gives the largest integer that is less than or equal to x; let d·e denote the
ceiling function, so that, for a real number x, dxe gives the smallest integer that is greater than or
equal to x; and let ιp = (1, 1, ..., 1)′ denote a p× 1 vector of ones. Finally, the abbreviation w.p.a.1

stands for “with probability approaching one”.

2 Model, Assumptions, and Variable Selection in High Dimen-

sions

Consider the following pth-order factor-augmented vector autoregression (FAVAR):

Wt+1 = µ+A1Wt + · · ·+ApWt−p+1 + εt+1, (1)

4The technical appendix is posted online at: http://econweb.rutgers.edu/nswanson/papers/ and also at
http://econweb.umd.edu/~chao/Research/research.html
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where

Wt+1
(d+K)×1

=

 Yt+1
d×1

Ft+1
K×1

 , εt+1
(d+K)×1

=

 εYt+1
d×1

εFt+1
K×1

 , µ
(d+K)×1

=

 µY
d×1

µF
K×1

 , and

Ag
(d+K)×(d+K)

=

 AY Y,g
d×d

AY F,g
d×K

AFY,g
K×d

AFF,g
K×K

 , for g = 1, ..., p.

Here, Yt denotes the vector of observable economic variables, and Ft is a vector of unobserved

(latent) factors. In our analysis of this model, it will often be convenient to rewrite the FAVAR

in several alternative forms, such as when making assumptions used in the sequel. We thus briefly

outline two alternative representations of the above model. First, it is easy to see that the system

of equations given in (1) can be written in the form:

Yt+1 = µY +AY Y Y t +AY FF t + εYt+1, (2)

Ft+1 = µF +AFY Y t +AFFF t + εFt+1, (3)

where

AY Y
d×dp

=
(
AY Y,1 AY Y,2 · · · AY Y,p

)
, AY F
d×Kp

=
(
AY F,1 AY F,2 · · · AY F,p

)
,

AFY
K×dp

=
(
AFY,1 AFY,2 · · · AFY,p

)
, AFF
K×Kp

=
(
AFF,1 AFF,2 · · · AFF,p

)
,

and where

Y t
dp×1

=


Yt

Yt−1

...

Yt−p+1

 , and F t
Kp×1

=


Ft

Ft−1

...

Ft−p+1

 . (4)

Another useful representation of the FAVAR model is the so-called companion form, wherein the

pth-order model given in expression (1) is written in terms of a first-order model:

W t
(d+K)p×1

= α+AW t−1 + Et,
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where W t =
(
W ′t W ′t−1 · · · W ′t−p+2 W ′t−p+1

)′
and where

α =



µ

0
...

0

0


, A =



A1 A2 · · · Ap−1 Ap

Id+K 0 · · · 0 0

0 Id+K
. . .

... 0
...

. . . . . . 0
...

0 · · · 0 Id+K 0


, and Et =



εt

0
...

0

0


. (5)

This companion form is convenient for establishing certain moment conditions on Y t and F t, given

a moment condition on εt, and for establishing certain mixing properties of the FAVAR model, as

shown in the proofs of Lemmas B-5 and Lemma B-11 given in Appendix B.

In addition to observations on Yt, suppose that the data set available to researchers includes a

vector of time series variables which are related to the unobserved factors in the following manner:

Zt
N×1

= ΓF t + ut, (6)

where the properties of ut are given in Assumptions 2-3 and 2-4, below. Now, assume that not all

components of Zt provide useful information for estimating the unobserved vector, F t, so that the

N ×Kp parameter matrix Γ may have some rows whose elements are all zero. More precisely, let

the 1 ×Kp vector, γ′i, denote the ith row of Γ, and assume that the rows of the matrix Γ can be

divided into two classes:

H = {k ∈ {1, ...., N} : γk = 0} and (7)

Hc = {k ∈ {1, ...., N} : γk 6= 0} . (8)

In this case, there exists a permutation matrix P such that PZt =
(
Z

(1)′
t Z

(2)′
t

)′
, where

Z
(1)
t

N1×1

= Γ1F t + u
(1)
t (9)

Z
(2)
t

N2×1

= u
(2)
t . (10)

The above representation suggests that the components of Z(1)
t can be interpreted as some sort

of “information” variables, as the information that they supply will be helpful in estimating F t.

On the other hand, for the purpose of factor estimation, the components of the subvector Z(2)
t

are pure “noise” variables, as they do not load on the underlying factors and only add noise if

7



they are included in the factor estimation process. An empirical researcher will often not have

prior knowledge as to which variables are elements of Z(1)
t and which are elements of Z(2)

t . This

underscores the potential usefulness for a variable selection procedure which will allow us to properly

identify the components of of Z(1)
t and to use only these variables when we try to estimate F t. If

we unknowingly include too many components of Z(2)
t in the estimation process, then inconsistency

in factor estimation can result, as shown in Theorem 2.1 of Chao, Qiu, and Swanson (2023).5

To provide a variable selection procedure with provable guarantees, we must first specify a

number of conditions on the FAVAR model defined above.

Assumption 2-1: Suppose that:

det
{
I(d+K) −A1z − · · · −Apzp

}
= 0, implies that |z| > 1. (11)

Assumption 2-2: Let εt satisfy the following set of conditions: (a) {εt} is an independent
sequence of random vectors with E [εt] = 0 ∀t; (b) there exists a positive constant C such

that suptE ‖εt‖62 ≤ C < ∞; (c) εt admits a density gεt such that, for some positive constant
M < ∞, supt

∫
|gεt (υ − u)− gεt (υ)| dε ≤ M |u|, whenever |u| ≤ κ for some constant κ > 0; and

(d) there exists a constant C > 0 such that inft λmin {E [εtε
′
t]} ≥ C > 0.

Assumption 2-3: Let ui,t be the ith element of the error vector ut in expression (6), and we

assume that it satisfies the following conditions: (a) E [ui,t] = 0 for all i and t; (b) there exists

a positive constant C such that supi,tE |ui,t|7 ≤ C <∞, and there exists a constant C > 0 such that

infi,tE
[
u2
i,t

]
≥ C; (c) define F ti,−∞ = σ (...., ui,t−2, ui,t−1, ut), F∞i,t+m = σ (ui,t+m, ui,t+m+1, ui,t+m+2, ....),

and

βi (m) = sup
t
E
[
sup

{∣∣P (B|F ti,−∞)− P (B)
∣∣ : B ∈ F∞i,t+m

}]
.

Assume that there exist constants a1 > 0 and a2 > 0 such that

βi (m) ≤ a1 exp {−a2m} , for all i;

and (d) there exists a positive constant C such that supt

(
1
N1

∑
i∈Hc

∑
k∈Hc

|E [ui,tuk,t]|
)
≤ C <∞ for

every positive integer N1, where Hc is defined in expression (8) above.

Assumption 2-4: εt and ui,s are independent, for all i, t, and s.

Assumption 2-5: There exists a positive constant C, such that supi∈Hc ‖γi‖2 ≤ C < ∞ and

‖µ‖2 ≤ C <∞, where µ = (µ′Y , µ
′
F )′.

5Chao, Qiu, and Swanson (2023) is a not-for-publication working paper and can be found at
http://econweb.umd.edu/~chao/Research/research.html Note that some of the results in the current paper draw
on results contained in Chao, Qiu, and Swanson (2023).
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Assumption 2-6: There exists a positive constant C, such that:

0 <
1

C
≤ λmin

(
Γ′Γ

N1

)
≤ λmax

(
Γ′Γ

N1

)
≤ C <∞ for all N1, N2 suffi ciently large,

where N1 is the number of components of the subvector Z
(1)
t (i.e., the number of relevant variables)

and N2 is the number of components of the subvector Z
(2)
t (i.e., the number of irrelevant variables),

as previously defined in expressions (9) and (10).

Assumption 2-7: Let A be as defined in expression (5) above, and let the eigenvalues of the

matrix I(d+K)p −A be sorted so that:

∣∣λ(1)

(
I(d+K)p −A

)∣∣ ≥ ∣∣λ(2)

(
I(d+K)p −A

)∣∣ ≥ · · · ≥ ∣∣λ((d+K)p)

(
I(d+K)p −A

)∣∣ = φmin.

Suppose that there is a constant C > 0 such that

σmin

(
I(d+K)p −A

)
≥ Cφmin (12)

In addition, there exists a positive constant C <∞ such that, for all positive integer j,

σmax

(
Aj
)
≤ C max

{∣∣λmax

(
Aj
)∣∣ , ∣∣λmin

(
Aj
)∣∣} . (13)

Note that Assumption 2-1 is the stability condition that one typically assumes for a station-

ary VAR process. One difference is that we allow for possible heterogeneity in the distribution of

εt across time, so that our FAVAR process is not necessarily a strictly stationary process. Un-

der Assumption 2-1, there exists a vector moving average representation for the FAVAR process.

Note also that it is well known that det
{
I(d+K) −Az

}
= det

{
I(d+K) −A1z − · · · −Apzp

}
, where

A is the coeffi cient matrix of the companion form given in expression (5). See, for example,

page 16 of Lütkepohl (2005). It follows that Assumption 2-1 is equivalent to the condition that

det
{
I(d+K) −Az

}
= 0 implies that |z| > 1. In addition, Assumption 2-1 is equivalent to the as-

sumption that all eigenvalues of A have modulus less than 1. Since the factor loading matrix Γ is

an N × Kp matrix, where N = N1 + N2, the matrix Γ′Γ will have order of magnitude equal to

N if the factors are pervasive. Assumption 2-6 allows for possible violations of this conventional

pervasiveness assumption, which will occur in our setup when N1/N → 0. Assumption 2-7 imposes

a condition whereby the extreme singular values of the matrices Aj and I(d+K)p − A have bounds
that depend on the extreme eigenvalues of these matrices. More primitive conditions for such a

relationship between the singular values and the eigenvalues of a (not necessarily symmetric) matrix

have been studied in the linear algebra literature. In Appendix B of this paper, we prove one such
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result which extends a well-known result by Ruhe (1975). More specifically, we state and prove the

following lemma:

Lemma 2-1: Let A be an n× n square matrix with (ordered) singular values given by σ(1) (A) ≥
σ(2) (A) ≥ · · · ≥ σ(n) (A) ≥ 0. Suppose that A is diagonalizable, i.e., A = SΛS−1, where Λ

is diagonal matrix whose diagonal elements are the eigenvalues of A. Let the modulus of these

eigenvalues be ordered as follows:
∣∣λ(1) (A)

∣∣ ≥ ∣∣λ(2) (A)
∣∣ ≥ · · · ≥ ∣∣λ(n) (A)

∣∣. Then, for k ∈ {1, ..., n}
and for any positive integer j, we have that:

χ (S)−1
∣∣λ(k)

(
Aj
)∣∣ ≤ σ(k)

(
Aj
)
≤ χ (S)

∣∣λ(k)

(
Aj
)∣∣

where

χ (S) = σ(1) (S)σ(1)

(
S−1

)
.6

Note that in the special case where the matrices A and I(d+K)p−A are diagonalizable, the inequal-
ities given in expressions (12) and (13) are a direct consequence of this lemma. On the other hand,

Assumption 2-7 takes into account other situations where expressions (12) and (13) are valid even

though the matrices A and I(d+K)p −A are not diagonalizable.
Assumptions 2-1, 2-2(a)-(c), and 2-7 together allow us to show in Lemma B-11 of Appendix B

that the process {Wt} generated by the FAVAR model given in expression (1) is a β-mixing process
with β-mixing coeffi cient satisfying:

βW (m) ≤ a1 exp {−a2m} ,

for some positive constants a1 and a2, with

βW (m) = sup
t
E
[
sup

{∣∣P (B|At−∞)− P (B)
∣∣ : B ∈ A∞t+m

}]
,

and with At−∞ = σ (...,Wt−2,Wt−1,Wt) and A∞t+m = σ (Wt+m,Wt+m+1,Wt+m+2, ....). Note that

Assumption 2-2 (c) rules out situations such as that given in the famous counterexample presented

by Andrews (1984) which shows that a first-order autoregression with errors having a discrete

Bernoulli distribution is not α-mixing, even if it satisfies the stability condition. Conditions similar

to Assumption 2-2(c) have also appeared in previous papers, such as Gorodetskii (1977) and Pham

and Tran (1985), which seek to provide suffi cient conditions for establishing the α or β mixing

properties of linear time series processes.

Our variable selection procedure is based on a self-normalized statistic and makes use of some

pathbreaking moderate deviation results for weakly dependent processes recently obtained by Chen,
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Shao, Wu, and Xu (2016). An advantage of using a self-normalized statistic, as we will discuss a

bit more following expression (18) below, is that it allows the range of the moderate deviation

approximation to be wider relative to their non-self-normalized counterparts. To accommodate

data dependence, we consider self-nomalized statistics that are constructed from observations which

are first split into blocks in a manner similar to the kind of construction one would employ in

implementing a block bootstrap or in proving a central limit theorem using the blocking technique.

Two such statistics are proposed in this paper. The first of these statistics has the form of an `∞

norm and is given by:

max
1≤`≤d

|Si,`,T | = max
1≤`≤d

∣∣∣∣∣∣ Si,`,T√
V i,`,T

∣∣∣∣∣∣ , (14)

where

Si,`,T =

q∑
r=1

(r−1)τ+τ1+p−1∑
t=(r−1)τ+p

Zity`,t+1 and (15)

V i,`,T =

q∑
r=1

(r−1)τ+τ1+p−1∑
t=(r−1)τ+p

Zity`,t+1

2

. (16)

Here, Zit denotes the ith component of Zt , y`,t+1 denotes the `th component of Yt+1, τ1 = bTα1
0 c,

and τ2 = bTα2
0 c, where 1 > α1 ≥ α2 > 0, τ = τ1 + τ2, q = bT0/τc, and T0 = T − p+ 1. Note that

the statistic given in expression (14) can be interpreted as the maximum of the (self-normalized)

sample covariances between the ith component of Zt and the components of Yt+1. Our second

statistic has the form of a pseudo-L1 norm and is given by:

d∑
`=1

$` |Si,`,T | =
d∑
`=1

$`

∣∣∣∣∣∣ Si,`,T√
V i,`,T

∣∣∣∣∣∣ ,
where Si,`,T and V i,`,T are as defined in expressions (15) and (16) above and where {$` : ` = 1, .., d}
denotes pre-specified weights, such that $` ≥ 0, for every ` ∈ {1, ..., d}, and

∑d

`=1
$` = 1. Both

of these statistics employ a blocking scheme similar to that proposed in Chen, Shao, Wu, and Xu

(2016), where, in order to keep the effects of dependence under control, the construction of these

statistics is based only on observations in every other block. To see this, note that if we write out

11



the “numerator”term Si,`,T in greater detail, we have that:

Si,`,T =

τ1+p−1∑
t=p

Zity`,t+1 +

τ+τ1+p−1∑
t=τ+p

Zity`,t+1

+

2τ+τ1+p−1∑
t=2τ+p

Zity`,t+1 + · · ·+
(q−1)τ+τ1+p−1∑
t=(q−1)τ+p

Zity`,t+1 (17)

Comparing the first term and the second terms on the right-hand side of expression (17), we see

that the observations Zity`,t+1, for t = τ1+p, ..., τ+p−1, have not been included in the construction

of the sum. Similar observations hold when comparing the second and the third terms, and so on.

It should also be pointed out that although Chen, Shao, Wu, and Xu (2016) focus their analysis

on problems of testing and inference for the mean of a scalar weakly dependent time series using

self-normalized Student-type test statistics, our paper applies the self-normalization approach to a

variable selection problem in a FAVAR setting. Namely, the problem which we study is more akin

to a classification (or model selection) problem rather than a multiple hypothesis testing problem.

In order to consistently estimate the factors up to an invertible matrix transformation, we develop

a variable selection procedure whereby both the probability of a false positive and the probability

of a false negative converge to zero as N1, N2, T →∞7. This is different from the typical multiple

hypothesis testing approach whereby one tries to control the familywise error rate (or, alternatively,

the false discovery rate), so that it is no greater than 0.05, say, but does not try to ensure that this

probability goes to zero as the sample size grows.

To determine whether the ith component of Zt is a relevant variable for the purpose of factor

estimation, we propose the following procedure. Define i ∈ Ĥc to indicate that the procedure

has classified Zit to be a relevant variable for the purpose of factor estimation. Similarly, define

i ∈ Ĥ to indicate that the procedure has classified Zit to be an irrelevant variable. Now, let S+
i,T

denote either the statistic max1≤`≤d |Si,`,T | or the statistic
∑d

`=1
$` |Si,`,T |. Our variable selection

procedure is based on the decision rule:

i ∈
{
Ĥc if S+

i,T ≥ Φ−1
(
1− ϕ

2N

)
Ĥ if S+

i,T < Φ−1
(
1− ϕ

2N

) , (18)

where Φ−1 (·) denotes the quantile function or the inverse of the cumulative distribution function
of the standard normal random variable, and where ϕ is a tuning parameter which may depend on

7Here, a false positive refers to mis-classifying a variable, Zit, as a relevant variable for the purpose of factor
estimation when its factor loading γ′i = 0, whereas a false negative refers to the opposite case, where γ′i 6= 0, but the
variable Zit is mistakenly classified as irrelevant.

12



N . Some conditions on ϕ will be given in Assumptions 2-11 and 2-11* below.

To understand why using the quantile function of the standard normal as the threshold function

for our procedure is a natural choice, note first that, by a slight modification of the arguments given

in the proof of Lemma B-17 in Appendix B of the Technical Appendix, we can show that, as T →∞

P (|Si,`,T | ≥ z) = 2 [1− Φ (z)] (1 + o (1)) , (19)

which holds for all i and ` and for all z such that

0 ≤ z ≤ c0 min
{
T (1−α1)/6/L (T ) , Tα2/2

}
, where L (T ) denotes a slowly varying function such

that L (T )→∞ but L (T ) /T (1−α1)/6 → 0 as T →∞. In view of expression (19), we can interpret
moderate deviation as providing an asymptotic approximation of the (two-sided) tail behavior of the

self-normalized statistic, Si,`,T , based on the tails of the standard normal distribution. An important

advantage of using self-normalized statistics in this context is that the range for which this standard

normal approximation is valid (i.e., the range 0 ≤ z ≤ c0 min
{
T (1−α1)/6/L (T ) , Tα2/2

}
) is wider for

self-normalized statistics relative to their non-self-normalized counterparts. Now, suppose initially

that we wish simply to control the probability of a Type I error for testing the null hypothesis

H0 : γi = 0 (i.e., the ith variable does not load on the underlying factors) at some fixed significance

level α. Then, expression (19) suggests that a natural way to do this is to set z = Φ−1 (1− α/2).

This is because, given that the quantile function Φ−1 (·) is, by definition, the inverse function of
the cdf Φ (·), we have that:

P
(
|Si,`,T | ≥ Φ−1 (1− α/2)

)
= 2

[
1− Φ

(
Φ−1 (1− α/2)

)]
(1 + o (1)) = α (1 + o (1)) ,

so that the probability of a Type I error is controlled at the desired level α asymptotically. Note

also that an advantage of moderate deviation theory is that it gives a characterization of the

relative approximation error, as opposed to the absolute approximation error. As a result, the

approximation given is useful and meaningful even when α is very small, which is of importance

to us since we are interested in situations where we might want to let α go to zero, as sample size

approaches infinity.

The above example provides intuition concerning the form of the threshold function that we have

specified. The variable selection problem that we actually consider is more complicated however,

since we need to control the probability of a Type I error (or of a false positive) not just for a

single test involving the ith variable but for a multiple hypothesis testing scenario involving the

loading coeffi cient vectors for all variables Zit (for i = 1, ..., N). Moreover, as noted previously, we

want also to design a procedure where the probability of a false positive will go asymptotically to
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zero as well. We show in Theorem 1 below that these objectives can all be accomplished using the

threshold function specified in expression (18).8

Indeed, under appropriate conditions, the variable selection procedure described above can be

shown to be completely consistent, in the sense that both the probability of a false positive, i.e.

P
(
i ∈ Ĥc|i ∈ H

)
, and the probability of a false negative, i.e., P

(
i ∈ Ĥ|i ∈ Hc

)
, approach zero as

N , T →∞. To show this result, we must first state a number of additional assumptions.
Assumption 2-8: There exists a positive constant, c, such that for T suffi ciently large:

min
1≤`≤d

min
i∈H

min
r∈{1,...,q}

E


 1
√
τ1

(r−1)τ+τ1+p−1∑
t=(r−1)τ+p

y`,t+1uit

2 ≥ c,
where, as defined earlier,

τ1 = bTα1
0 c , τ2 = bTα2

0 c for 1 > α1 ≥ α2 > 0 and q =

⌊
T0

τ1 + τ2

⌋
,

and T0 = T − p+ 1.

Assumption 2-9: Let i ∈ Hc = {k ∈ {1, ...., N} : γk 6= 0}. Suppose that there exists a positive
constant, c, such that, for all N1, N2,and T suffi ciently large:

min
1≤`≤d

min
i∈Hc

∣∣∣∣µi,`,Tqτ1

∣∣∣∣
= min

1≤`≤d
min
i∈Hc

∣∣∣∣∣∣1q
q∑
r=1

1

τ1

(r−1)τ+τ1+p−1∑
t=(r−1)τ+p

γ′i
{
E [F t]µY,` + E

[
F tY

′
t

]
αY Y,` + E

[
F tF

′
t

]
αY F,`

}∣∣∣∣∣∣
≥ c > 0,

where µY,` = e′`,dµY , αY Y,` = A′Y Y e`,d, and αY F,` = A′Y F e`,d. Here, e`,d is a d× 1 elementary vector

whose `th component is 1 and all other components are 0.

Assumption 2-10: Suppose that, as N1, N2, and T → ∞, the following rate conditions hold:√
lnN

T
min

{
1−α1

6 ,
α2
2

} → 0, where (a) 1 > α1 ≥ α2 > 0 and N = N1 + N2, and (b) N1/T
3α1 → 0 where

1 > α1 > 0.

Assumption 2-11: Let ϕ satisfy the following two conditions: (a) ϕ→ 0 as N1, N2 →∞, and (b)
8The threshold function used here is reminiscent of the one employed in a celebrated paper by Belloni, Chen,

Chernozhukov, and Hansen (2012). More specifically, Belloni, Chen, Chernozhukov, and Hansen (2012) use a similar
threshold function to help set the penalty level for Lasso estimation of the first-stage equation of an IV regression
model assuming i.n.i.d. data. In spite of the similarity in the form of the threshold function, the problem studied in
that paper is very different from the one which we analyze here. In consequence, the conditions we specify for setting
the tuning parameter ϕ will also be quite different from what they recommend in their paper.
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there exists some constant a > 0, such that ϕ ≥ 1/Na, for all N1, N2 suffi ciently large. Assumption

2-8 rules out certain degenerate situations where as T →∞

E


 1
√
τ1

(r−1)τ+τ1+p−1∑
t=(r−1)τ+p

y`,t+1uit

2→ 0

for some 1 ≤ ` ≤ d, i ∈ H, and r ∈ {1, .., q}, since a moderate deviation result and, in fact, a central
limit theorem, would not hold in general if such degeneracies were to occur. A similar condition is

also assumed in Chen, Shao, Wu, and Xu (2016). See condition (4.2) on page 1600 of that paper.

To give an intuitive interpretation for Assumption 2-9, note that the term

µi,`,T
qτ1

=
1

q

q∑
r=1

1

τ1

(r−1)τ+τ1+p−1∑
t=(r−1)τ+p

γ′i
{
E [F t]µY,` + E

[
F tY

′
t

]
αY Y,` + E

[
F tF

′
t

]
αY F,`

}
is, in fact, a noncentrality parameter for the variable-selection/multiple-hypothesis-testing problem

considered here. This condition allows us to differentiate between the null hypothesis, i ∈ H (where

γi = 0) from the alternative hypothesis i ∈ Hc (where γi 6= 0) so that, under this condition, it will

be possible to design procedures, such as the one proposed here, which will have asymptotic power.

To see this more clearly, note that if i ∈ H, then it is clear that:

µi,`,T
qτ1

=
1

q

q∑
r=1

1

τ1

(r−1)τ+τ1+p−1∑
t=(r−1)τ+p

γ′i
{
E [F t]µY,` + E

[
F tY

′
t

]
αY Y,` + E

[
F tF

′
t

]
αY F,`

}
= 0,

given that γi = 0 in this case. On the other hand, under the alternative hypothesis where i ∈ Hc,

we will have γi 6= 0 so that µi,`,T / (qτ1) 6= 0 under Assumption 2-9. Now, we believe Assumption

2-9 is a fairly mild condition to be placed on a FAVAR since, given the interconnectedness of a

FAVAR, it is unlikely to have a situation where

µi,`,T
qτ1

=
1

q

q∑
r=1

1

τ1

(r−1)τ+τ1+p−1∑
t=(r−1)τ+p

γ′i
{
E [F t]µY,` + E

[
F tY

′
t

]
αY Y,` + E

[
F tF

′
t

]
αY F,`

}
= 0

in the case where γi 6= 0. It should be noted, of course, that Assumption 2-9 does rule out

certain specialized situations, such as the case when µY,` = 0, αY Y,` = 0, and αY F,` = 0, for some

` ∈ {1, ..., d}. However, we do not consider such cases to be of much practical interest since, for
example, if µY,` = 0, αY Y,` = 0, and αY F,` = 0 for some ` then expression (2) above implies that
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the `th component of Yt+1 will have the representation

y`,t+1 = µY,` + Y ′tαY Y,` + F ′tαY F,` + εY`,t+1

= εY`,t+1,

so that, in this case, y`,t+1 depends neither on Y t =
(
Y ′t , Y

′
t−1, ..., Y

′
t−p+1

)′ nor on
F t =

(
F ′t , F

′
t−1, ..., F

′
t−p+1

)
. This is, of course, an unrealistic model for y`,t+1 since it would not even

be dependent. Hence, we do not expect Assumption 2-9 to be violated except in highly degenerate

situations such as the one just described.

The following two theorems give our main theoretical results on the variable selection procedure

described above.

Theorem 1: Let H = {k ∈ {1, ...., N} : γk = 0}. Suppose that Assumptions 2-1, 2-2(a)-(c), 2-
3(a)-(c) 2-4, 2-5, 2-7, 2-8, 2-10 (a) and 2-11 hold. Let Φ−1 (·) denote the inverse of the cumulative
distribution function of the standard normal random variable, or, alternatively, the quantile function

of the standard normal distribution. Then, the following statements are true:

(a) Let {$` : ` = 1, .., d} be pre-specified weights, such that $` ≥ 0, for every ` ∈ {1, ..., d} and∑d

`=1
$` = 1, then:

P

(
max
i∈H

d∑
`=1

$` |Si,`,T | ≥ Φ−1
(

1− ϕ

2N

))
= O

(
N2ϕ

N

)
= o (1) ,

where N = N1 +N2.

(b)

P

(
max
i∈H

max
1≤`≤d

|Si,`,T | ≥ Φ−1
(

1− ϕ

2N

))
= O

(
N2ϕ

N

)
= o (1) .

Theorem 2: Let Hc = {k ∈ {1, ...., N} : γk 6= 0}. Suppose that Assumptions 2-1, 2-2(a)-(c),

2-3(a)-(c), 2-5, 2-7, 2-9, 2-10, and 2-11 hold. Then, the following statements are true.

(a) Let {$` : ` = 1, .., d} be pre-specified weights, such that $` ≥ 0, for every ` ∈ {1, ..., d} and∑d

`=1
$` = 1, then:

P

(
min
i∈Hc

d∑
`=1

$` |Si,`,T | ≥ Φ−1
(

1− ϕ

2N

))
→ 1.
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(b)

P

(
min
i∈Hc

max
1≤`≤d

|Si,`,T | ≥ Φ−1
(

1− ϕ

2N

))
→ 1.

Theorem 1 shows that, under our procedure, the probability of a false positive, i.e., the proba-

bility that i ∈ Ĥc, even though γi = 0, approaches zero, as N,T →∞. Theorem 2 shows that the

probability of a false negative, i.e., the probability that i ∈ Ĥ even though γi 6= 0, also approaches

zero, as N,T → ∞. Together, these two theorems show that our variable selection procedure is
(completely) consistent in the sense that the probability of committing a misclassification error

vanishes as N,T →∞.

Remark 2.1:

It should be noted that a special case of our FAVAR model which is of particular interest is

the case where d = 1, i.e., the case where the Y variable is univariate. In this case, equation (2)

reduces to

yt+1 = µY + aY Y,1yt + · · ·+ aY Y,pyt−p+1 + a′Y FF t + εYt+1 (20)

where µY is now a 1 × 1 intercept parameter; aY Y,1..., aY Y,p are the p autoregressive parameters;

a′Y F is a 1 × Kp coeffi cient vector; and εYt+1 is now a 1 × 1 error term. Expression (20), thus,

yields a factor augmented autoregressive model which is commonly used to forecast economic time

series. Moreover, when d = 1, it is easy to see that our two statistics, max1≤`≤d |Si,`,T | and∑d

`=1
$` |Si,`,T |, reduce to the same one since

max
1≤`≤d

|Si,`,T | = max
1≤`≤1

|Si,`,T | = Si,1,T =

1∑
`=1

$` |Si,`,T | =
d∑
`=1

$` |Si,`,T |

given that 1 =
∑d

`=1
$` = $1 in this case. Hence, for the d = 1 case, we can remove the subscript

1 and write

Si,1,T = Si,T =
Si,T√
V i,T

(21)

where

Si,T =

q∑
r=1

(r−1)τ+τ1+p−1∑
t=(r−1)τ+p

Zityt+1 and V i,`,T =

q∑
r=1

(r−1)τ+τ1+p−1∑
t=(r−1)τ+p

Zityt+1

2

(22)

so that our statistic can be viewed as a self-normalized sample covariance constructed using blocked

sums.

Remark 2.2:

It is also worth stressing at this point that although we interpret our variable selection procedure
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primarily as a procedure which assesses the relevance of a variable Zit, it is clear from expressions

(21) and (22) above that our procedure also contains information about the predictive content of the

variable Zit for yt+1. There is a close association between the relevance and the predictive content

of a variable in the context of a FAVAR model. This is true because if γi = 0, i.e., if Zit does not

load on any of the underlying factors, so that Zit is an irrelevant variable; then Zit will also not have

predictive content for yt+1 because, within a FAVAR system, any possible correlation between Zit

and yt+1 only works its way through indirectly via the factors. Hence, if Zit is not correlated with

any of the factors, then it will not have correlation with yt+1. However, the reason why we choose

to interpret our procedure as one which primarily assesses the relevance of the variables Zit (for

i = 1, ..., N) is because a FAVAR system is quite complex, and one can find examples where a Zit

variable is specified to not have any predictive content for yt+1, but a variable selection procedure

based on the score statistic nevertheless rejects the null hypothesis with probability one as sample

sizes approach infinity. To see how this could be the case, consider the following example.

Example 1: Consider a two-factor FAVAR model of the form:

yt+1 = aY Y yt + αY F,1f1,t + εYt+1

f1,t+1 = aFY,1yt + aFF,11f1,t + aFF,12f2,t + εF1,t+1

f2,t+1 = aFY,2yt + aFF,21f1,t + aFF,22f2,t + εF2,t+1, (23)

with the factor equation given by

Zt = ΓFt + ut, (24)

where Ft =
(
f1,t f2,t

)′
and where αY F,1 6= 0. Note that, under the specification given by

expressions (23) and (24), the factor f2,t has no predictive content for the target variable of interest

yt+1, whereas the factor f1,t does have predictive content. Now, write the companion form:

Wt+1 = AWt + εt+1,

where

Wt =


yt

f1,t

f2,t

 , εt =


εYt

εF1,t

εF2,t

 , and A =


aY Y αY F,1 0

aFY,1 aFF,11 aFF,12

aFY,2 aFF,21 aFF,22

 ,

and where we defne Σε = E [εtε
′
t] and assume that Σε is positive definite. Here, under Assumption
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2-1, we have the vector moving-average representation:

Wt+1 =
∞∑
j=0

Ajεt+1,

It follows that the components of Wt+1 have the univariate MA representations:

yt+1 =
∞∑
j=0

e′1A
jεt+1−j , f1,t =

∞∑
k=0

e′2A
kεt−k, and f2,t =

∞∑
k=0

e′3A
kεt−k,

with e1 =
(

1 0 0
)′
, e2 =

(
0 1 0

)′
, and e3 =

(
0 0 1

)′
. Let Zit and Zjt be, respec-

tively, the ith and the jth components of Zt (with i 6= j). Suppose that Zit loads only on the second

factor but not the first, so that γ′i =
(

0 γi2

)
, where γi2 6= 0; and suppose that Zjt loads only on

the first factor but not the second, so that γ′j =
(
γj1 0

)
, where γj1 6= 0. Hence, both Zit and

Zjt are relevant variables for factor estimation, but Zjt has predictive content for yt+1 whereas Zit

does not. Consider the score statistics associated with Zit and Zjt :

Si =
T−1∑
t=1

Zityt+1 =
T−1∑
t=1

(
γ′iFt + uit

)
yt+1 =

T−1∑
t=1

γi2f2,tyt+1 +
T−1∑
t=1

uityt+1 and

Sj =
T−1∑
t=1

Zjtyt+1 =
T−1∑
t=1

(
γ′jFt + ujt

)
yt+1 =

T−1∑
t=1

γj1f1,tyt+1 +
T−1∑
t=1

ujtyt+1.

Now, suppose that σ32 6= 0 ; (where σ32 denotes the (3, 2)th element of the error covariance matrix

Σε); then, given that γj2 6= 0 and αY F,1 6= 0, the expected value of Si will not, in general, be

properly centered at zero. That is,

E [Si] =
T−1∑
t=1

E [Zityt+1] = γi2

T−1∑
t=1

E [f2,tyt+1] +
T−1∑
t=1

E [uityt+1]

= γi2

T−1∑
t=1

∞∑
k=0

∞∑
`=0

e′3A
kE
[
εt−kε

′
t+1−`

] (
A′
)`
e1 = γi2

T−1∑
t=1

∞∑
k=0

e′3A
kΣε

(
A′
)k+1

e1

= γi2 (T − 1) [σ31aY Y + σ32αY F,1] + γi2

T−1∑
t=1

∞∑
k=1

e′3A
kΣε

(
A′
)k+1

e1

6= 0,

except in very specialized cases.9 Moreover, given that γj1 6= 0, σ22 > 0, and αY F,1 6= 0; the

9The reason why we say that in this case E [Si] 6= 0, except in very specialized cases, is because although given
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expected value of Sj will also not, in general, be properly centered at zero. That is,

E [Sj ] =
T−1∑
t=1

E [Zjtyt+1]

= γj1

T−1∑
t=1

E [f1,tyt+1] +
T−1∑
t=1

E [ujtyt+1]

= γj1

T−1∑
t=1

∞∑
k=0

∞∑
`=0

e′2A
kE
[
εt−kε

′
t+1−`

] (
A′
)`
e1

= γj1

T−1∑
t=1

∞∑
k=0

e′2A
kΣε

(
A′
)k+1

e1

= γj1 (T − 1) [σ21aY Y + σ22αY F,1] + γj1

T−1∑
t=1

∞∑
k=1

e′2A
kΣε

(
A′
)k+1

e1

6= 0,

except in very specialized cases. Hence, both statistics, when appropriately normalized, will diverge

with probability approaching one, as T → ∞. This makes the right inference about the relevance
of both of these variables, since the divergence of these statistics implies that the null hypothesis

H0 : γi = 0 (i.e., Zit is irrelevant) as well as the null hypothesis H0 : γj = 0 (i.e., Zjt is irrelevant)

will both be rejected with probability approaching one. However, if we were to interpret these

statistics as providing inference about the predictive content of the variables Zit and Zjt; then, we

would have made the wrong inference about Zit, since it loads only on f2,t which is not helpful in

predicting yt+1.

On the other hand, consider the alternative scenario where γi2 = 0 and γj1 = 0 so that

γ′i =
(

0 γi2

)
=
(

0 0
)
and γ′j =

(
γj1 0

)
=
(

0 0
)
, and, thus, both Zit and Zjt are

that γi2 6= 0, σ32 6= 0, and αY F,1 6= 0; it is clear that the term γi2 (T − 1)σ32αY F,1 6= 0; one may nevertheless argue
that even in this case it is possible to have E [Si] = 0 if it turns out that

γi2 (T − 1)σ32αY F,1 = −γi2 (T − 1)σ31aY Y − γi2
T−1∑
t=1

∞∑
k=1

e′3A
kΣε

(
A′
)k+1

e1.

However, note that for the above identity to hold, the elements of A and Σε including σ31 and aY Y must take on
very specific values so that in general the above identity is not likely to hold, in which case we would have E [Si] 6= 0.
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now irrelevant variables. Then, under this alternative scenario, we would have

E [Si] = γi2

T−1∑
t=1

∞∑
j=1

e′3A
j−1Σε

(
A′
)j
e1 = 0

E [Sj ] = γj1

T−1∑
t=1

∞∑
j=1

e′2A
j−1Σε

(
A′
)j
e1 = 0

so that both statistics are now properly centered at zero, and neither will diverge, when appropri-

ately normalized, as T →∞. It follows that, under this alternative scenario, given an appropriate
threshold or critical value, we will also make the correct inference asymptotically about the fact

that both Zit and Zjt are irrelevant variables in this case. Hence, under both scenarios, we make

the right inference asymptotically about the relevance of a variable; however, under the first sce-

nario, we do not make the right inference about predictive content. For ease of presentation, we

have given an example based on a simple score statistic whose construction does not involve a

blocking scheme or self-normalization. The same story holds, however, for the more complicated

score statistics discussed in this paper.

The above example shows that interpreting a score-statistic-based variable selection procedure

as a procedure which selects variables based on predictive content as opposed to relevance leads

to a situation where we cannot, in general, interpret these type of procedures as being completely

consistent. However, leaving particular examples like this one aside, we do believe that it is often

useful to interpret our variable selection procedure as being helpful both for assessing the predictive

content and for assessing the relevance of a variable Zit in a factor augmented forecasting context,

since the two objectives are closely related. In addition, it should be noted that being able to

correctly identify all of the relevant variables and use only the relevant variables to estimate the

factors can itself be helpful from the perspective of forecasting. This is because a forecasting

equation such as the one given in expression (20) above depends on the unobserved latent factors

which must be estimated. In either the case where some irrelevant variables are employed in the

estimation process or if some relevant variables are not employed, the quality of the factor estimates

could be reduced; which, in turn, can adversely affect the quality of point forecasts.

Remark 2.3:

Note also that a valuable by-product of our variable selection procedure is that it provides us

with an estimate N̂1 of the unobserved quantity N1, where the latter, in light of Assumption 2-6,

can also be interpreted as giving the order of magnitude of Γ′Γ and is, thus, a measure of the

overall pervasiveness of the factors in a given application. As mentioned previously, since N1 is

itself not directly observable, having a consistent estimator N̂1 provides practitioners with a useful
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diagnostic statistic which can help them assess the overall pervasiveness of the factors in empirical

applications. As we show in part (a) of Lemma C-15 in Appendix C of the Technical Appendix,

N̂1 is a consistent estimator of N1, in the sense that N̂1/N1
p→ 1. As can be seen from the proof of

Lemma C-15(a), this consistency result will not be possible in general if we do not have a completely

consistent variable selection procedure where the probabilities of both Type I error and Type II

error vanish asymptotically. To give an intuitive example for why this is the case, consider the

following.

Example 2: Suppose that N1 = d(1− α)Ne and N2 = bαNc for some fixed α such that 0 < α < 1,

and suppose that we use a variable selection procedure which, even in large sample, results in a 5%

Type I error but no Type II error so that N̂1 = (N1 + 0.05N2) [1 + op (1)]. Then, it is easy to see

that

N̂1

N1
− 1 =

N̂1 −N1

N1

=
(N1 + 0.05N2) [1 + op (1)]−N1

N1

=
0.05N2 [1 + op (1)]

N1
+ op (1)

=
0.05 bαNc
d(1− α)Ne [1 + op (1)] + op (1)

=
0.05 bαNc
d(1− α)Ne + op (1)

6= op (1)

so that, under this scenario, N̂1 is not a consistent estimator of N1. Now, one may argue at this

point that if we instead assume that N2/N1 → 0 (which corresponds to the case where α→ 0), then

we will still have a consistency result such that N̂1/N1
p→ 1, even when we use a variable selection

procedure where the probability of a Type I error does not vanish asymptotically. However,

note that if a dataset is well approximated by the rate condition N2/N1 → 0, then the forecast

results based on our procedure should be very similar to the forecast results obtained under the

conventional PCA procedure, given that in this situation very few variables will be excluded from

factor estimation under our variable selection procedure. This does not seem to be in accord with

our empirical results reported in Section 5, where we find that using FRED-MD data delivers

forecast results based on our procedure that are better than the forecast results of the conventional

PCA procedure in a vast majority of the cases considered. Moreover, our estimates of N1 and N2

using the FRED-MD dataset are not indicative of a situation where N2 is negligible relative to N1.

Alternatively, suppose instead that we use a variable selection procedure which results in a 5%

22



Type II error but no Type I error in large sample, so that N̂1 = 0.95N1 [1 + op (1)]. For this case,

we have

N̂1

N1
− 1 =

0.95N1 [1 + op (1)]−N1

N1

= −0.05N1

N1
+ op (1)

= −0.05 + op (1)

6= op (1)

Together, the two cases described above show that, to obtain a consistent estimate of N1, we need

in general to apply a completely consistent variable selection method.

In their paper, Bai and Ng (2023) provide a rate condition for consistent factor estimation

(i.e., Assumption A4 in their paper) which can be restated in our setup as the assumption that

N/ (TN1) → 0. Now, this rate condition can provide a very useful guide for applied researchers

wishing to assess the overall pervasiveness of the factors in a particular empirical problem of interest

to them if a consistent estimator can be developed for the unobserved quantity N1, and this is

exactly what our procedure supplies. Viewed from this perspective, what we are proposing here

builds on the work of Bai and Ng (2023), as our procedure helps to highlight the importance of

the rate condition they have introduced and provides additional information that will be helpful

to empirical researchers in assessing the degree of pervasiveness of the underlying factors in a

particular empirical application.

Remark 2.4:

Additionally, note that knowledge of the number of factors is not needed to implement our

variable selection procedure. Hence, in the case where the number of factors needs to be determined

empirically, an applied researcher could first use our procedure to properly select the relevant

variables and then apply an information criterion such as that proposed in Bai and Ng (2002) to

estimate the number of factors.

3 Consistent Estimation of the h-Step Ahead Predictor Based on

the FAVAR Model

In this section, we provide our main theoretical results on factor estimation and also on the estima-

tion of the h-step ahead predictor within the FAVAR framework. This includes deriving an explicit

representation of the h-step ahead forecasting equation implied by the FAVAR model. The totality

of our results, as provided in this section and in the previous section of the paper, gives a complete
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description of our proposed methodology for constructing forecasts within a FAVAR framework. In

particular, our results provide explicit formulae that allow empirical researchers to easily implement

procedures for variable selection for the purpose of factor estimation, use the selected variables to

construct estimators of the factors, and finally to estimate the h-step ahead predictor.

To obtain the results of this section, we need first to impose a further rate condition on the

tuning parameter, ϕ (see part (c) of Assumption 2-11* below).

Assumption 2-11*: Let ϕ satisfy the following three conditions: (a) ϕ→ 0 as N1, N2 →∞; (b)
there exists some constant a > 0, such that ϕ ≥ 1/Na, for all N1, N2 suffi ciently large; and (c)

max

{
N

2
7ϕ

5
7

N1
,
N

1
3ϕ

N1T

}
→ 0 as N1, N2, T →∞.

Note that the rate condition given in part (c) of Assumption 2-11* depends on N1. However, if we

choose ϕ so that ϕN
2
5 = O (1), then

N
2
7ϕ

5
7

N1
= O

(
1

N1

)
= o (1) and

N
1
3ϕ

N1T
= O

(
1

N1N
1
15T

)
= o

(
1

N1

)
.

Hence, with this choice of ϕ, Assumption 2-11* part (c) will be satisfied as long as N1 → ∞, and
there is no need to impose any further condition on the rate at which N1 grows. Requiring that

N1 →∞ is a minimal condition, since if N1 9∞; then consistent factor estimation, even up to an
invertible matrix transformation, is impossible. Moreover, Monte Carlo results reported in Section

5 of this paper show that our variable selection procedure performs very well in finite samples,

under the tuning parameter choice ϕ = N−
2
5 , both in terms of controlling the probability of a false

positive (or Type I) error and in terms of controlling the probability of a false negative (or Type

II) error.

Next, consider the post-variable-selection principal component estimator of F t =
(
F ′t , F

′
t−1, ..., F

′
t−p+1

)
:

F̂ t =
Γ̂′Zt,N

(
Ĥc
)

N̂1

, (25)

where

Zt,N

(
Ĥc
)

=
[
Z1,tI

{
1 ∈ Ĥc

}
Z2,tI

{
2 ∈ Ĥc

}
· · · ZN,tI

{
N ∈ Ĥc

} ]′
,

with

I
{
i ∈ Ĥc

}
=

{
1 if i ∈ Ĥc, i.e., if S+

i,T ≥ Φ−1
(
1− ϕ

2N

)
0 if i ∈ Ĥ, i.e., if S+

i,T < Φ−1
(
1− ϕ

2N

) ,
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and where N̂1 = #
(
Ĥc
)
, i.e., the cardinality of the set Ĥc. Here, Γ̂ denotes the principal compo-

nent estimator of the loading matrix Γ constructed from taking
√
N̂1 times the eigenvectors of the

post-variable-selection sample covariance matrix Σ̂
(
Ĥc
)
associated with the Kp largest eigenval-

ues of this matrix, where, in this case, Σ̂
(
Ĥc
)

=
Z(Ĥc)

′
Z(Ĥc)

N̂1T0
= 1

N̂1T0

T∑
t=p

Zt,N

(
Ĥc
)
Zt,N

(
Ĥc
)′
,

with T0 = T −p+ 1. Our next result shows that the estimator given in expression (25) consistently

estimates the unobserved factors F t,up to an invertible Kp×Kp matrix transformation.
Theorem 3: Suppose that Assumptions 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 2-7, 2-8, 2-9, and 2-10

hold. Let F̂ t be as defined in expression (25). Assume further that the specification of the tuning

parameter, ϕ, in the decision rule (18) satisfies Assumption 2-11*. Then,∥∥∥F̂ t −Q′F t∥∥∥
2

= op (1) , for all fixed t,

where

Q =

(
Γ′Γ

N1

) 1
2

ΞV̂ ,

and where V̂ is the Kp×Kp orthogonal matrix given in Lemma C-14 part (c), and Ξ is a Kp×Kp
orthogonal matrix whose columns are the eigenvectors of the matrix

M∗FF =

(
Γ′Γ

N1

)1/2

MFF

(
Γ′Γ

N1

)1/2

=

(
Γ′Γ

N1

)1/2 1

T0

T∑
t=p

E
[
F tF

′
t

](Γ′Γ

N1

)1/2

.

Although Theorem 3 shows that, without further identifying assumptions, we can only estimate

the factors F t consistently up to an invertible Kp × Kp matrix transformation, this result turns
out to be suffi cient for us to estimate the h-step ahead predictor consistently. More specifically, in

Appendix C of the Technical Appendix, we show that, for an h-step ahead forecast, the (infeasible)

forecasting equation implied by the FAVAR model (1) has the form

Yt+h = β0 +B′1Y t +B′2F t + ηt+h, (26)
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where Y t and F t are as defined in expression (4) above and where:

β0 =

h−1∑
j=0

JdA
jα, B′1 = JdA

hP ′(d+K)pSd, B
′
2 = JdA

hP ′(d+K)pSK and (27)

ηt+h =

h−1∑
j=0

JdA
jJ ′d+Kεt+h−j .

Here, α and A are, respectively, the intercept (vector) and the coeffi cient matrix of the companion

form defined in expression (5) above, P(d+K)p is a permutation matrix such that P(d+K)pW t =(
Y t

F t

)
, Sd =

 Idp

0
Kp×dp

, SK =

 0
dp×Kp

IKp

, Jd
d×(d+K)p

=
[
Id 0 · · · 0

]
, and Jd+K

(d+K)×(d+K)p

=[
Id+K 0 · · · 0

]
. See the beginning of Appendix C for a derivation of the equation given in

expression (26). The reason expression (26) is called an infeasible forecasting equation is because

F t is not observed, so to obtain a feasible version of this forecasting equation, we must replace F t
in equation (26) with the estimate F̂ t given in expression (25). Doing so, we arrive at a feasible

h-step ahead forecasting equation of the form:

Yt+h = β0 +

p∑
g=1

B′1,gYt−g+1 +

p∑
g=1

B′2,gF̂t−g+1 + η̂t+h

= β0 +B′1Y t +B′2F̂ t + η̂t+h, (28)

where η̂t+h = ηt+h −B′2
(
F̂ t − F t

)
, with ηt+h =

∑h−1

j=0
JdA

jJ ′d+Kεt+h−j .

One can interpret expression (28) as a “reduced form”formulation of the forecasting equation

where the reduced form parameters β0, B1, and B2 are nonlinear functions of the parameters

(µ,A1, ...., Ap) of the FAVAR model, in the case where h > 1. For forecasting purposes, while

it is possible to estimate the conditional mean of the forecasting equation (28) by estimating the

underlying parameters directly using nonlinear least squares, here we choose instead to estimate

the conditional mean by estimating the reduced form parameters β0, B1, and B2 via linear least

squares. An important reason why we choose this approach is due to complications that arise both

because we are forecasting with a FAVAR which contains unobserved factors that must first be

estimated and because we only make enough identifying assumptions so that the factors can only

be estimated consistently up to an invertible Kp×Kp matrix transformation. In fact, it turns out
that estimating the underlying parameters µ,A1, ...., Ap by nonlinear least squares and constructing

an estimator of the conditional mean of the forecasting equation based on these estimates will not

lead to a consistently estimated h-step predictor, unless further identifying assumptions are made.
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On the other hand, as we show in Theorem 4 below, estimating the reduced form parameters β0,

B1, and B2 by linear least squares allows us to construct a consistent estimator of the conditional

mean, even in the absence of additional identifying assumptions. More precisely, let F̂ t denotes

the factor estimates given in expression (25). Our procedure minimizes the least squares criterion

function:

Q (β0, B1, B2) =

T−h∑
t=p

∥∥∥Yt+h − β0 −B′1Y t −B′2F̂ t
∥∥∥2

2

=
T−h∑
t=p

∥∥∥∥∥∥Yt+h − β0 −
p∑
g=1

B′1,gYt−g+1 −
p∑
g=1

B′2,gF̂t−g+1

∥∥∥∥∥∥
2

2

(29)

with respect to the parameters β0, B1, and B2, and delivers the OLS estimates β̂0, B̂1, and B̂2.

We then forecast YT+h using the h-step predictor:

ŶT+h = β̂0 + B̂′1Y T + B̂′2F̂ T . (30)

The following result shows that ŶT+h is a consistent estimator of the conditional mean of the

infeasible forecast equation (26).

Theorem 4: Let ŶT+h be as defined in expression (30). Suppose that Assumptions 2-1, 2-2, 2-3,

2-4, 2-5, 2-6, 2-7, 2-8, 2-9, 2-10, and 2-11* hold. Then,

ŶT+h −
(
β0 +B′1Y T +B′2F T

) p→ 0 as N1, N2, T →∞.

4 Monte Carlo Experiment

In this section, we report some simulation results on the finite sample performance of our variable

selection procedure. The model used in the Monte Carlo study is the following tri-variate FAVAR(1)

process:

Wt = µ+AWt−1 + εt, (31)

Zt = γFt + ut, (32)
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where

Wt =


Y1t

Y2t

Ft

 , µ =


2

1

2

 , A =


0.9 0.3 0.5

0 0.7 0.1

0 0.6 0.7

 , and γ =

 ιN1

0
N2×1

 ,

with ιN1 denoting an N1 × 1 vector of ones. We consider different configurations of N , N1, and T,

as given below. For the error process in equation (31), we take {εt} ≡ i.i.d.N (0,Σε), where:

Σε =


1.3 0.99 0.641

0.99 0.81 0.009

0.641 0.009 5.85

 .
The error process, {uit} , in equation (32) is allowed to exhibit both temporal and cross-sectional
dependence and also conditional heteroskedasticity. More specifically, we let uit = 0.8uit−1 + ζit,

and following the approach for modeling cross-sectional dependence given in the Monte Carlo

design of Stock and Watson (2002a), we specify: ζit =
(
1 + b2

)
ηit + bηi+1,t + bηi−1,t, and set

b = 1. In addition, ηit = ωitξit, with {ξit} ≡ i.i.d.N (0, 1) independent of {εt}, and ωit follows
a GARCH(1,1) process given by: ω2

it = 1 + 0.9ω2
it−1 + 0.05η2

it−1. To study the effects of varying

the tuning parameter, we consider specifications where ϕ = (ln lnN)−ϑ for ϑ = 0.1, 0.5, 1 and also

ϕ = N−ϑ for ϑ = 0.2, 0.4, 0.6.10 We also attempt to shed light on the effects of using blocks of

different sizes on the performance of our procedure. To do this, for T = 100, we set τ1 = 2, 3, 4,

and 5; for T = 200, we set τ1 = 5, 6, 8, and 10; and for T = 600, we set τ1 = 6, 8, 10, and 12.

Due to space considerations, we only report Monte Carlo results for the statistic
∑d

`=1
$` |Si,`,T |.

Simulation results for the statistic max1≤`≤d |Si,`,T | have also been obtained by the authors. The
results for max1≤`≤d |Si,`,T | are qualitatively similar to those given here for

∑d

`=1
$` |Si,`,T |, and

they are available from the authors upon request. In addition, since d = 2 in our Monte Carlo

setup, we set $1 = $2 = 1/2. Results are gathered in Table 1 in the back of the paper. There, the

acronym FPR denotes the “False Positive Rate”or the “Type I”error rate, i.e., the proportion of

cases where an irrelevant variable Zit, with associated coeffi cient γi = 0 is erroneously selected as

a relevant variable. FNR denotes the “False Negative Rate”or the “Type II”error rate, i.e., the

proportion of cases where a relevant variable is erroneously identified as being irrelevant.

Looking across each row of the table, note that FPRs decrease when moving from left to

right, whereas FNRs increase. This is not surprising, because moving from ϕ = (ln lnN)−0.1 to

10We have also obtained simulation results for the cases where ϕ = (lnN)−ϑ for ϑ = 0.1, 0.5, 1 and where ϕ = N−ϑ

for ϑ = 0.3, 0.5. The results obtained for these cases are qualitatively similar to the results reported in this paper.
Hence, due to space considerations, we do not report these results here, but they are available from the authors upon
request.
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ϕ = N−0.6 for a given N results in smaller values of the tuning parameter ϕ, and the specified

threshold Φ−1
(
1− ϕ

2N

)
thus becomes larger. Overall, these results indicate that choosing ϕ in the

range between (ln lnN)−0.1 and N−0.4 leads to very good performance, since within this range,

neither FPR nor FNR exceeds 0.1 in any of the cases studied here. In fact, both are smaller than

0.05 in a vast majority of the cases. In contrast, choosing ϕ = N−0.6 can lead to high FNRs, as

such a choice of ϕ can set our threshold at such a high level that our procedure ends up having

very little power.

Looking down the columns of the table, note that FPR tends to increase as τ1 increases,

whereas FNR tends to decrease as τ1 increases. As an explanation for this result, note first that

the smaller is τ1 relative to τ , the larger is τ2 (since τ = τ1 + τ2), and thus the larger is the

number of observations removed when constructing the self-normalized block sums. Intuitively,

this can lead to better accommodation of the effects of dependence and better moderate deviation

approximations under the null hypothesis, resulting in a lower FPR. However, removal of a larger

number of observations can also lead to a reduction in power, when the alternative hypothesis is

correct, so that a negative consequence of having a smaller τ1 relative to τ is that FNR will tend

to be higher in this case. The opposite, of course, occurs when we try to specify a larger τ1 relative

to τ .

Our results also show that when the sample sizes are large enough such as the cases presented

in the last panel of the table, where T = 600 and N = 1000, then both FPR and FNR are very

close to zero for all of the cases that we consider. Moreover, even in the case where T = 100 and

N = 100, FPR and NPR rates are usually less than 0.05, and are often much smaller than that.

This is in accord with the results of our theoretical analysis, which shows that our variable selection

procedure is completely consistent in the sense that both the probability of a false positive and the

probability of a false negative approach zero, as the sample sizes go to infinity.

5 Forecasting Experiments

In this section, we carry out prediction experiments using two different datasets and using the

variable selection methodology discussed above. Our goal is to compare different variable selection

methods, and more broadly to assess whether reducing the number of variables prior to factor

estimation using the consistent selection and estimation technique discussed above can result in

improved forecast performance.
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5.1 Empirical Illustration 1 - FRED-MD Dataset

In this illustration, we forecast eight target variables from the monthly real-time macroeconomic

FRED-MD dataset maintained by the St. Louis Federal Reserve Bank.11 We follow the data

cleaning methods outlined on the FRED-MD data website, as well as removing all discontinued

series yielding a dataset, X, containing 96 variables for the period 1975:1 to 2024:6. The full list of

all macroeconomic variables and their transformations is available upon request from the authors.12

Of note is that the FRED-MD dataset used in this illustration is “truly” real-time. Consider

the value of industrial production for January 2020. In February 2020, the government reported

a “first release” value for January. In March 2020, they updated their “estimate” of industrial

production for January. Namely, they reported a “second release” for January. This process of

revision continues indefinitely. Namely, as the government changes data collection and processing

methodology, collects new data and/or revises definitions of variables, new releases are reported.

A “vintage” of data consists of all of the historical data that were available, in real-time, at a

particular calendar date, say February 2020. This means that there is a unique vintage of industrial

production data available each month, and the values of the calendar dated observations in each

vintage may change over time. Using this type of data allows the practitioner to truly simulate a

forecasting environment in which models are updated at each point in time using data that were

actually available at that time. For further discussion of the structure of real-time datasets, as well

as methods for real-time forecasting, refer to Swanson (1996), Swanson and van Dijk (2006), and

Kim and Swanson (2018).

Our forecasting experiment is carried out as follows. All forecasts that we construct utilize

the most recent vintage of data available. Thus, at each point in time prior to the construction

of each new forecast, a new vintage of data is used for variable selection, factor construction,

and forecast model estimation. The eight target variables for which we construct predictions are

summarized in Table 2, and include Industrial Production (INDPRO), Civilian Unemployment Rate

(UNRATE), Housing Starts: new, privately owned (HOUST), Housing Permits: new, privately

owned (PERMIT), Real M2 Money Stock (M2REAL), 10-Year Government Treasury Bond Rate

(GS10), CPI - All Items (CPI), S&P Common Stock Price Index - Composite (S&P500).

11 see https://www.stlouisfed.org/research/economists/mccracken/fred-databases
12We use the variable transformations recommended on the FRED-MD website (see the FRED MD appendix on

that website for complete details), with three exceptions. First, we do not difference unemployment. Second, we
do not difference interest rate variables. Third, we do not take second differences of any variables. Instead, we
take first differences of the small number of variables that are twice differenced in the list of recommended variable
transformations referred to above. Tabulated results based on the original FRED-MD variable transformations are
available upon request from the authors. Also, note that the original FRED-MD dataset actually begins in 1973:3.
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We estimate the following forecasting model:

yt+h = α+ βh(L)yt + γh(L)F t + εt+h, (33)

where yt is the scalar target variable to be predicted, βh(L) and γh(L) are finite order lag polynomi-

als, F t is a vector of estimated factors, and εt is a stochastic disturbance term. Lags in this model

are selected using the Schwarz Information Criterion (SIC), and our benchmark model sets the

lag polynomial γh(L) = 0. In implementing our forecast experiments, we take the initial training

sample to be the period 1975:1-1999:12; but as we move forward in time with each new prediction,

we use a new release of the data (i.e., an updated data vintage) in constructing our forecast. The

tuning parameters as well as the number of factors are all re-estimated based on the updated data

vintage. Applying our procedure to the FRED-MD dataset in this way yields estimates of N1 rang-

ing from 41 to 72 across the different training samples that result from our updating of the data

vintage and across our 8 target variables. Since there are N = 95 total number of possible predictor

variables excluding the target variable of interest, our estimates of N1 imply that the number of

irrelevant variables N2 is estimated to be in the range from 24 to 54 for the range of cases described

above, so that, for the FRED-MD dataset, the number of irrelevant variables N2 seems to be a

significant proportion of the total number of available variables. Given the non-triviality of N2,

having a variable selection procedure to identify those irrelevant variables which only contribute

noise to the factor estimation process can potentially be beneficial both for estimation and for

forecasting purposes. Moreover, as we mentioned previously in section 2, to obtain a consistent

estimator N̂1 of N1, we need a completely consistent variable selection procedure, except in the case

where N2/N1 → 0. However, in light of what we have just discussed, the rate condition N2/N1 → 0

does not seem to be reasonable for the FRED-MD dataset. Hence, if an applied researcher wishes

to use an estimate of N1 to assess the overall pervasiveness of the factors for a particular dataset

of interest; then, it would make sense for her/him to use a completely consistent variable selection

method since a selection method which is not completely consistent is not guaranteed to provide

a consistent estimator of N1. What still remains to be seen, however, is whether our completely

consistent variable selection method will lead to improved forecast performance.

In the sequel, we carry out variable selection and dimension reduction as follows in order to

estimate F t:13

Principal Components Analysis (PCA): Utilize X to estimate latent factors, F t using PCA, with

the number of factors determined using the PCp2 criterion in Bai and Ng (2002). The maximum

number of the factors is set equal to both 4 and 8 (resulting in two distinct sets of empirical results),

13Note that all forecasting models are estimated using least squares, once the factors are first estimated.
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following the findings of McCracken and Ng (2016), who introduce and examine the dataset that

we utilize in our analysis.

Hard Thresholding (HT): For each variable in X, and forecast horizon, h, perform a regression of

yt+h on lags of yt and on Xi,t, where Xi,t is a scalar variable in X, for i = 1, ..., N , and lags of

yt are selected using the SIC. Let ti denote the t statistic associated with Xit−h in the regression,

and select variables, Xit if |ti| > 1.28. If the number of selected variables is greater than 20, utilize

PCA to estimate factors for inclusion in the above forecasting equation, otherwise use the AR(SIC)

model. As models are re-estimated at each point in time, this approach is a hybrid, in the sense that

some models may include factors as regressors, while others may be simple AR(SIC) models. Note

that for all variables except the S&P500, the thresholding model was replaced with the AR(SIC)

benchmark for less than 10% of the total number of forecasting periods.

Chao-Swanson Variable Selection (CS): Use the self-normalized statistic given in expressions (21)

and (22) above for variable selection, and then estimate factors for inclusion in the forecasting

equation using PCA. Consider the following sets of tuning parameter values: {τ = 5, τ1 = 3, 5}
and {τ = 10, τ1 = 6, 8}, with

ϕ =



(lnlnN)−0.1 (lnlnN)−0.6 (lnN)−0.1 (lnN)−0.6 N−0.1 N−0.6

(lnlnN)−0.2 (lnlnN)−0.7 (lnN)−0.2 (lnN)−0.7 N−0.2 N−0.7

(lnlnN)−0.3 (lnlnN)−0.8 (lnN)−0.3 (lnN)−0.8 N−0.3 N−0.8

(lnlnN)−0.4 (lnlnN)−0.9 (lnN)−0.4 (lnN)−0.9 N−0.4 N−0.9

(lnlnN)−0.5 (lnlnN)−1 (lnN)−0.5 (lnN)−1 N−0.5 N−1

.

Tuning parameters used for each value of h and target variable are selected in real-time prior to

the construction of each new forecast by using an initial “training dataset”consisting of the first

25 years of data. This training dataset is partitioned into an in-sample period of 20 years and

an out-of-sample period of 5 years. In subsequent prediction experiments, tuning parameter is set

equal to that yielding the smallest mean square forecast error (MSFE) after constructing real-time

predictions over this 5 year period.

In summary, we construct real-time h-month ahead predictions using monthly data, with h =1,

3, 6, and 12. Our forecasting models are called PCA, CS, and HT, in reference to the manner

in which variable selection prior to factor estimation is carried out. The sample period used in

our analysis is 1975:1-2024:6, and our ex ante forecast period is 2000:1-2024:6. Our initial training

sample period is 25 years from 1975:1 to 1999:12, as discussed above, and both rolling and recursive

windows of data are used when re-estimating models at each point in time. Forecasting performance

is evaluated using point mean squared forecast errors (MSFEs), where MSFE= 1
P

∑T
t=1(yt − ŷt)2,
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and ŷt denotes the real-time prediction for target variable yt. In our tabulated results, MSFEs,

relative to those of the benchmark AR(SIC) model are reported. Additionally, we report the

results of Giacomini-White (GW) tests (see Giacomini and White (2006)), which can be viewed

as conditional Diebold-Mariano (DM) predictive accuracy tests (see Diebold and Mariano (1995)).

Recall that the null hypothesis of the DM test when formulated using the conditioning approach of

Giacomini andWhite is: H0 : E[L(ε̂
(1)
t+h)|Gt]−E[L(ε̂

(2)
t+h)|Gt] = 0, where the ε̂(i)t+h are prediction errors

associated with model i, for i = 1, 2, and Gt denotes the conditioning set, which includes the model

and estimated parameters. Here, L(·) is a quadratic loss function, and the test statistic is DMP =

P−1
P∑
t=1

dt+h
σ̂d̄
, where dt+h = [̂ε

(1)
t+h]2 − [̂ε

(2)
t+h]2, d̄ denotes the mean of dt+h, σ̂d̄ is a heteroskedasticity

and autocorrelation consistent estimate of the standard deviation of d̄, and P denotes the number

of ex-ante predictions used to construct the test statistic.14 If the null hypothesis is rejected and

the relative MSFE is greater than 1, then the AR benchmark is preferred.

Our main empirical findings are gathered in Table 3 and Table 4. In these tables, all entries are

relative MSFEs, with our AR(SIC) benchmark in the denominator. Additionally, bolded entries

indicate the “MSFE-best" method for a particular target variable, forecast horizon, and estimation

window type (i.e. rolling or recursive). Starred entries denote rejection of the null hypothesis of

equal forecast accuracy when comparing the listed model against the AR(SIC) benchmark. Note

that Table 3 reports the relative MSFE results for the case where in choosing the number of factors

using the PCp2 criterion in Bai and Ng (2002), we set the maximum allowable number of factors

to be 4, whereas Table 4 reports the results for the case where the maximum allowable number of

factors is 8. Moreover, the first three columns of results given in Tables 3 and 4 are for the case

where the estimation is conducted using a recursive data window, while the last three columns of

results in both tables are for the case where estimation is conducted using a rolling data window. A

number of conclusions can be drawn from examining the results in these tables. Focusing on Table

3, we see that when a recursive data window is used, then we see that CS has a smaller MSFE than

both PCA and HT in 16 out of the 32 possible cases, when comparing the MSFE results of PCA,

HT, and CS across 8 different target variables and 4 different forecast horizons. On the other hand,

HT is the top performer in 11 out of 32 cases while PCA wins in 5 out of 32 cases. The results

are even better when we adopt a rolling data window. In this case, CS beats both HT and PCA in

24 out of 32 cases, whereas HT wins in 5 out of 32 cases and PCA only wins in 3 out of 32 cases.

Turning our attention to Table 4, we see that in the case where a recursive data window is used, CS

beats both HT and PCA in 18 out of 32 cases, while HT wins in 7 out of 32 cases and PCA wins

in 6 out of 32 cases, with HT and PCA sharing first place in the one remaining case. Moreover,

14 In this paper, we report test results for the Wald version of this test statistic (see Giacomini and White (2006)
for further details).
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the results reported in Table 4 for the case where a rolling data window is used find CS winning

in 19 out of 32 cases, HT winning in 7 out of 32 cases, and PCA winning in 6 out of 32 cases.

Finally, if we compare CS directly with PCA across 8 different target variables, 4 forecast horizons,

2 choices of data window specification (recursive or rolling), and 2 choices of maximum allowable

number of factors (4 or 8); we see that CS outperforms PCA in 97 out of the 128 possible cases

considered here, whereas PCA only outperforms CS in 31 cases. The latter results also provide

some additional evidence that the inclusion of the irrelevant variables actually has a non-negligible

influence on our estimation and forecasting results; since, if the number of irrelevant variables N2

is negligibly small so that their inclusion has only a trivial impact; then, we would expect more

balance with respect to the number of cases for which PCA beats CS versus the number of cases

for which CS beats PCA.

To summarize, overall CS wins more frequently than either HT or PCA. However, note that

no method uniformly beats all of the competing methods across all settings, which should not be

surprising when one applies econometric methods to real world data. The goal of this empirical

illustration is simply to provide evidence that the CS variable selection procedure introduced in this

paper can be useful for FRED-MD forecasting. Needless to say, our results are not meant to imply

that the other methods are not also useful. Rather, we believe that the CS variable selection method

should be added to the “toolbox”of methods used when constructing macroeconomic forecasts.

5.2 Empirical Illustration 2 - Global VAR Modelling Dataset

In this illustration, we forecast 5 target variables from the quarterly real-time macroeconomic

Global VAR Modelling (GVAR) dataset maintained by L. Vanessa Smith.15 The GVAR dataset

extends the original one used in Dees, di Mauro, Pesaran and Smith (2007), which covers the

period 1979:Q1-2003:Q4 (see also Pesaran, Schuermann and Smith (2009)). More specifically, the

dataset includes 4 vintages of real-time data on 6 variables for 33 countries. The four vintages

include data collected in 2011 for the period 1979:Q1-2011:Q2, data collected in 2013 for the period

1979:Q1-2013:Q1, data collected in 2017 for the period 1979:Q1-2016:Q4, and data collected in

2023 for the period 1979:Q1-2023:Q3. The 5 variables that we forecast include GDP growth,

inflation, equity returns, short-term interest rates, and long-term interest. These variables are

predicted for 6 different countries, including the USA, the UK, Germany, France, Italy, and Japan.

Additionally, the GVAR dataset to which we apply the CS and HT variable selection methods prior

to constructing factors includes 6 variables for each of 33 countries for a total of 198 variables. The

conventional PCA procedure does not involve variable pre-screening, so it uses this entire set of

15 see https://sites.google.com/site/gvarmodelling/home
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variables (again excluding the target variable of interest) in estimating the factors.

When constructing predictions, we use a variant of the forecasting model analyzed in the pre-

vious empirical illustration, specified as follows:

yt+h = α+ βh(L)yt + γh(L)F t + δh(L)W t+ εt+h. (34)

All terms in the above equation are defined in the previous empirical illustration, with the exception

of δh(L)W t, where W t contains the 5 target macroeconomic variables for each of the 6 countries in

our analysis, and δh(L) is a conformably defined lag polynomial. The forecasting component of this

illustration follows the approach of Pesaran, Schuermann and Smith (2009), where forecasts for the

last 8 periods of our sample period are constructed, and models are ranked based on comparison

of MSFEs that are constructed by averaging ranks across all 5 variables. Our sample period is

1979:Q1-2023:Q3, so that only the latest vintage of data is used in our analysis, and the ex ante

forecasting period is 2021:Q4-2023:Q3.16 The models that we use when constructing include PCA,

CS, HT, PCA+macro, CS+macro, and HT+macro. The first three models (i.e., PCA, CS, and

HT) are defined above. The latter three models include lags of the 5 macroeconomic variables as

explanatory variables, rather than just lags of the target variable, with lags selected using the SIC.

All models are estimated recursively, prior to the construction of each new forecast, using the same

procedures described in the previous section of this paper. Additionally, models are estimated using

PCA, followed by least squares, with lags selected using the SIC and the number of factors selected

using the PCp2 criterion of Bai and Ng (2002).

A summary of our results is presented in Table 5, where the average model ranks are reported.

These ranks are determined by comparing the MSFEs produced by the different methods for a

given country, target variable, and forecast horizon. Model ranks are defined as “1" for the lowest

MSFE model, “2” for the second “lowest”MSFE model, etc. For example, if a model, say PCA,

yields the lowest MSFE for French GDP growth at the h=1 step ahead horizon, PCA is assigned a

“1" as it is the lowest MSFE model for that particular country, horizon, and variable permutation.

16Note that Pesaran, Schuermann and Smith (2009) use an earlier vintage of data in their forecasting analysis, and
not the more recently available vintage ending in 2023:Q3 that we use. Additionally, their analysis and ours do not
use a new vintage of data for the construction of each new forecast, and hence are not truly real-time in the sense
discussed in our previous empirical illustration. For this reason, we also carried out a alternative “real-time”version
of the experiment reported on in this section by constructing 1 to 4 step ahead forecasts using each of the first three
vintages of data in the GVAR dataset (the 4th vintage of data was used as the “fully revised" data against which
all forecasts were compared when constructing forecast errors). More specifically, the 1979:Q1-2011:Q2 vintage of
data was used to construct h=1,...,4 step ahead forecasts beginning with the period 2011:Q3, the 1979:Q1-2013:Q1
vintage of data was used to construct h=1,...,4 step ahead forecasts beginning with the period 2013:Q2, and the
1979:Q1-2016:Q4 vintage of data was used to construct h=1,...,4 step ahead forecasts beginning with the period
2017:Q1. Results from this experiment yield rankings that are identical to those reported on in the sequel, and are
available upon request from the authors.
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Just as is done in Pesaran, Schuermann and Smith (2009), the model rankings reported in Table

5 average the individual rankings across all 5 forecasting variables. For example, note that the

first numerical entry in the Table 5 is 2.4. This means that for the USA, on average, the PCA

model ranks 2.4, when averaging the rank of the PCA model across all five of the variables that we

forecast.

A number of conclusions can be made by examining the results provided in Table 5. First, in

the top panel of Table 5, which summarizes results for h = 1, we see that the CS model is the top

performer for 2 of 6 countries (i.e., Germany and Japan). This increases to 4 of 6 countries when

counting the number of times that the CS model “wins”or comes in second place, with the USA

and France constituting the additional two countries. For the 2-step ahead horizon (refer to Panel

2), the CS model “wins”for 4 of 6 countries, and the CS+macro model wins for 1 country. For this

forecast horizon, the only country for which the top performer is not a CS-type model is Germany,

as HT outperforms all other methods in forecasting German data in the h = 2 case. The results

are roughly similar when assessing the number of CS model wins for the additional two forecast

horizons, so that overall the CS model is the top performer in terms of the number of times it

achieves the highest average ranking. Second, the model which comes in second place in terms of

the number of times that it achieves the highest ranking is PCA. More specifically, PCA “wins”in

8 of 24 cases and also ties for first place with HT in one other case, when comparing results across

all 6 countries and 4 forecast horizons. For comparison, note that the two CS-type models (i.e., CS

and CS+macro) together “win”in 12 of 24 cases, with the CS model winning in 11 of 24 cases and

the CS+macro model winning in one additional case. Moreover, if we were to compare CS directly

with PCA across results given for the 6 different countries and 4 different forecast horizons, we

see that CS outperforms PCA in terms of average rank in 14 out of the 24 possible cases. Third,

observe that our models which include additional macroeconomic explanatory variables do not

yield superior predictions, when compared against more parsimonious models that include only

factors and lags of the target variable being predicted. This is as expected, given how heavily

parameterized our models with additional explanatory variables are. In summary, this experiment

yields further evidence that the CS variable selection method is useful when specifying commonly

used factor augmented (vector) autoregression type time series models.

6 Conclusion

In this paper, we present a novel and completely consistent approach for variable selection in

high dimensional factor estimation problems. Our method can be useful in contexts where not all

available variables actually load on the underlying factors so that the variables which do not load
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can be considered to be irrelevant in the sense that they contribute only noise and not signal to the

factor estimation process. We show that our variable selection procedure allows for the consistent

estimation of the conditional mean of a factor-augmented forecasting equation based on a FAVAR

model, even in cases where the number of irrelevant variables may be quite substantial. Our new

variable selection procedure is based on a self-normalized score statistic, and it correctly identifies

the set of variables which load significantly on the underlying factors, with probability approaching

one, as the sample sizes go to infinity. Our theoretical analysis suggests that our method for

variable selection may be a useful complement to extant methods for pre-screening variables prior

to latent factor estimation. Some support for this conclusion is also given in the form of a Monte

Carlo experiment indicating that the variables selection method has very small false positive and

false negative rates even for samples that are not very large. In addition, we present two empirical

illustrations which show the good forecast performance of our methodology when compared to the

conventional PCA and hard thresholding procedures for variable selection.
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Table 1: Monte Carlo Results for Variable Selection Using S+
i,T =

∑d

`=1
$` |Si,`,T | Statistic∗

N = 100 N1 = 50 T = 100 τ = 5
ϕ = (ln lnN)−0.1 ϕ = (ln lnN)−0.5 ϕ = (ln lnN)−1 ϕ = N−0.2 ϕ = N−0.4 ϕ = N−0.6

τ1 = 2 FPR 0.03916 0.03350 0.02678 0.01460 0.00382 0.00076
FNR 0.00046 0.00068 0.00104 0.00284 0.01674 0.09412

τ1 = 3 FPR 0.04544 0.03902 0.03110 0.01810 0.00526 0.00092
FNR 0.00022 0.00032 0.00052 0.00172 0.01100 0.06942

τ1 = 4 FPR 0.05408 0.04650 0.03756 0.02224 0.00702 0.00162
FNR 0.00016 0.00024 0.00034 0.00118 0.00828 0.05194

τ1 = 5 FPR 0.06332 0.05462 0.04558 0.02796 0.00924 0.00232
FNR 0.00014 0.00018 0.00034 0.00084 0.00574 0.03948

N = 200 N1 = 100 T = 100 τ = 5
τ1 = 2 FPR 0.01913 0.01470 0.01068 0.00486 0.00064 0.00002

FNR 0.00206 0.00282 0.00449 0.01415 0.09966 0.48356
τ1 = 3 FPR 0.02341 0.01842 0.01365 0.00657 0.00098 0.00005

FNR 0.00143 0.00190 0.00315 0.00921 0.07372 0.40894
τ1 = 4 FPR 0.02869 0.02306 0.01733 0.00841 0.00133 0.00004

FNR 0.00111 0.00145 0.00224 0.00661 0.05564 0.34279
τ1 = 5 FPR 0.03506 0.02903 0.02194 0.01124 0.00213 0.00017

FNR 0.00086 0.00112 0.00172 0.00477 0.04258 0.28620
N = 400 N1 = 200 T = 200 τ = 10

τ1 = 5 FPR 0.00214 0.00148 0.00090 0.00030 2.5×10−5 0.00000
FNR 7.5×10−5 0.00016 0.00040 0.00231 0.06894 0.67266

τ1 = 6 FPR 0.00249 0.00166 0.00104 0.00034 0.00002 0.00000
FNR 0.00004 0.00009 0.00025 0.00148 0.05058 0.60968

τ1 = 8 FPR 0.00337 0.00235 0.00142 0.00046 0.00004 0.00000
FNR 0.00001 0.00002 0.00008 0.00068 0.02712 0.48133

τ1 = 10 FPR 0.00484 0.00350 0.00220 0.00079 7.5×10−5 5.0×10−6
FNR 0.00001 0.00001 0.00002 0.00034 0.01535 0.36382

N = 1000 N1 = 500 T = 600 τ = 12
τ1 = 6 FPR 0.00155 0.00121 0.00086 0.00038 0.00006 0.00001

FNR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
τ1 = 8 FPR 0.00201 0.00153 0.00106 0.00049 8.2×10−5 1.4×10−5

FNR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
τ1 = 10 FPR 0.00274 0.00216 0.00155 0.00072 0.00016 3.2×10−5

FNR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
τ1 = 12 FPR 0.00421 0.00332 0.00242 0.00115 0.00028 6.0×10−5

FNR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

* Notes: False positive and negative rates are reported for various values of N,N1, and T . Results
are based on 1000 simulations. See Section 3 for complete details.
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Table 2: Empirical Illustration 1 - FRED MD Dataset: Target Forecast Variables∗

Target Variable Abbreviation Data Transformation
Industrial Production INDPRO ∆log(yt)
Civilian Unemployment Rate UNRATE yt
Housing Starts (new, privately owned) HOUST log(yt)
Housing Permits (new, privately owned) PERMIT log(yt)
Real M2 Money Stock M2REAL ∆log(yt)
10-Year Government Treasury Bond Rate GS10 yt
CPIAUCSL (all items) CPI ∆log(yt)
S&P Common Stock Price Index (composite) S&P500 ∆log(yt)

∗ Notes: This table lists the target forecast variables that are predicted in our empirical illustration, and associated data

transformations.
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Table 3: Empirical Illustration 1 - FRED MD Dataset - Forecasting Results Based on the Use of
Alternative Variable Selection Methods With a Maximum of 4 Factors (Forecast Period 2000:1-2024:6)∗

Estim ation Uses Recursive Data W indow Estim ation Uses Rolling Data W indow

Target Variab le PCA HT CS PCA HT CS

INDPRO 0.924 0.926 0.926 0.959 0.990 0.964

UNRATE 0.576 0.637 0.568 0.423 0.417 0.455

HOUST 1.002 0.999 1.003 0.999 0.992 1.043

h=1 PERMIT 1.033 1.020 0.973 0.959 0.950 0.873

M2REAL 0.999 1.020 1.001 1.094 1.021 1.015

GS10 1.102 1.086 1.065 1.069 1.074 1.019

CPI 1.003 1.004 1.002 1.097 0.992 1.031

S&P500 1.061 ** 1.111 ** 1.054 *** 1.126 1.453 ** 1.079

INDPRO 1.036 1.052 1.016 1.078 0.964 1.032

UNRATE 0.564 0.586 0.580 0.801 0.801 0.779

HOUST 0.996 0.985 0.988 1.004 1.005 0.995

h=3 PERMIT 1.001 0.982 0.986 1.009 0.995 * 0.998

M2REAL 1.008 1.006 0.995 1.075 1.060 1.037 *

GS10 1.188 ** 1.135 * 1.168 1.076 1.090 0.962

CPI 0.971 0.967 0.960 0.976 0.970 0.966 *

S&P500 1.033 *** 1.000 1.025 ** 1.068 1.094 1.04

INDPRO 1.047 * 1.048 1.031 1.231 1.231 1.038

UNRATE 0.786 *** 0.813 *** 0.753 *** 0.733 0.733 0.726

HOUST 1.003 0.976 0.986 1.014 0.994 0.980

h=6 PERMIT 1.014 0.975 0.983 1.019 0.987 0.981

M2REAL 1.008 1.007 1.000 1.023 1.008 1.002

GS10 1.175 * 1.085 1.144 1.092 1.099 1.044

CPI 0.995 1.006 1.003 1.012 0.989 0.981

S&P500 1.026 * 1.038 1.034 * 1.178 1.085 1.042

INDPRO 1.009 1.011 1.001 1.003 1.021 1.001

UNRATE 0.762 *** 0.751 *** 0.734 *** 0.876 0.878 0.771

HOUST 0.951 0.939 * 0.956 1.009 1.006 0.952

h=12 PERMIT 0.979 0.944 0.94 1.017 0.954 0.953

M2REAL 1.002 0.967 0.988 1.002 0.967 0.96

GS10 1.224 1.152 * 1.109 1.121 1.151 1.187

CPI 0.949 0.938 0.955 0.958 0.948 0.931

S&P500 1.002 1.020 1.000 0.997 1.031 1.015

∗ Notes: Results reported in this table summarize findings from a prediction experiment that uses real-time data collected in

the St. Louis Federal Reserve Bank’s FRED-MD dataset (see

https://www.stlouisfed.org/research/economists/mccracken/fred-databases) to construct real-time forecasts. Tabulated

entries are relative MSFEs (where the AR(SIC) MSFE is the denominator), for forecast horizons h=1,3,6, and 12 months, and

for recursive and rolling data window estiamtion schemes. Entries in bold denote lowest relative MSFEs for a given target

variable, forecast horizon, and data windowing scheme. In all cases, factors are estimated using PCA, and the number of

factors is estiamted using the PCp2 criterion of Bai and Ng (2002). The variables used in factor estimation are selected using

PCA (all variables), hard thresholding (HT) and the CS test (CS). Starred entries indicate rejection of the null hypothesis of

equal conditional predictive ability, at significance levels p = 0.01 (∗ ∗ ∗), p = 0.05, (∗∗), and p = 0.10 (∗). See Section 5.1 for
complete details.
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Table 4: Empirical Illustration 1 - FRED MD Dataset - Forecasting Results Based on the Use of
Alternative Variable Selection Methods With a Maximum of 8 Factors (Forecast Period 2000:1-2024:6)∗

Estim ation Uses Recursive Data W indow Estim ation Uses Rolling Data W indow

Target Variab le PCA HT CS PCA HT CS

INDPRO 0.941 0.941 0.992 0.906 0.982 1.009

UNRATE 0.612 0.617 0.704 0.518 0.528 0.407

HOUST 0.998 0.993 1.032 1.045 0.989 1.037

h=1 PERMIT 0.971 1.008 0.941 0.910 0.971 0.816

M2REAL 1.027 1.004 1.008 1.013 1.021 1.041

GS10 1.196 1.128 1.115 1.096 1.110 1.070

CPI 0.968 0.980 0.966 1.021 0.979 1.035

S&P500 1.133 *** 1.129 ** 1.094 *** 1.295 1.438 1.151 **

INDPRO 1.086 1.068 1.087 1.083 0.955 1.095 *

UNRATE 0.574 0.579 0.575 0.811 0.799 0.801

HOUST 0.969 * 0.971 * 0.968 * 0.991 1.001 0.994

h=3 PERMIT 0.969 0.966 0.977 0.995 0.991 0.976

M2REAL 1.027 1.032 1.048 ** 1.025 1.086 1.036

GS10 1.279 1.245 * 1.128 1.125 1.126 1.077

CPI 0.973 0.945 0.922 * 0.959 0.984 0.990

S&P500 1.065 ** 1.028 1.054 ** 1.095 1.041 1.073

INDPRO 1.038 1.045 1.068 ** 1.187 1.189 1.132 *

UNRATE 0.803 *** 0.807 *** 0.771 *** 0.786 0.807 ** 0.824

HOUST 0.965 ** 0.967 * 0.966 * 1.020 1.020 0.983

h=6 PERMIT 0.963 * 0.966 0.975 1.005 0.996 0.956

M2REAL 1.031 1.039 * 1.001 1.014 1.042 1.000

GS10 1.305 1.33 * 1.250 1.281 ** 1.216 * 1.188

CPI 1.064 1.040 0.988 1.035 1.044 1.007

S&P500 1.081 1.108 ** 1.043 * 1.38 * 1.24 1.132

INDPRO 1.018 1.020 1.011 1.025 1.012 1.033

UNRATE 0.74 *** 0.741 *** 0.727 *** 0.781 * 0.745 * 0.724

HOUST 0.932 ** 0.921 ** 0.917 ** 1.028 0.970 0.946 *

h=12 PERMIT 0.958 0.93 0.943 1.037 1.002 0.931

M2REAL 0.987 0.972 0.971 1.002 0.964 0.977

GS10 1.437 1.401 ** 1.308 1.327 * 1.283 1.277

CPI 0.972 0.933 0.914 * 0.959 0.977 0.957

S&P500 1.042 1.022 1.024 1.018 1.060 1.015

∗ Notes: See notes to Table 3.
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Table 5: Empirical Illustration 2 - Multi Country Dataset - Average Predictive Accuracy Rank Scores by
Country and Forecast Horizon∗

PCA CS HT PCA+macro CS+macro HT+macro
Average Ranks Across All Variables for Forecast Horizon h=1

USA 2.4 3.6 3.6 3.8 3.8 3.8
UK 3.0 3.4 3.0 3.6 3.4 4.6
Germany 2.6 2.4 2.8 4.0 5.2 4.0
France 2.8 2.3 1.3 5.0 5.5 4.3
Italy 5.2 3.4 2.8 4.0 3.2 2.4
Japan 3.3 2.8 4.3 3.5 2.8 4.5

Average Ranks Across All Variables for Forecast Horizon h=2
USA 3.0 2.4 3.4 4.2 3.6 4.4
UK 3.2 3.0 4.8 3.8 2.4 3.8
Germany 2.8 3.0 2.0 4.2 4.6 4.4
France 3.3 2.0 2.8 5.3 3.5 4.3
Italy 3.6 2.6 2.6 4.6 4.4 3.2
Japan 3.3 3.0 3.8 3.8 3.8 3.5

Average Ranks Across All Variables for Forecast Horizon h=3
USA 2.6 4.2 2.8 3.4 5.0 3.0
UK 3.2 3.0 4.0 3.8 3.2 3.8
Germany 2.6 3.0 3.6 4.4 4.0 3.4
France 3.0 1.8 2.8 4.8 4.3 4.5
Italy 3.2 2.2 2.8 4.2 5.2 3.4
Japan 2.5 3.5 3.5 3.3 4.0 4.3

Average Ranks Across All Variables for Forecast Horizon h=4
USA 2.2 4.0 3.2 3.6 4.2 3.8
UK 3.4 2.8 4.0 3.8 3.2 3.8
Germany 2.6 3.6 3.4 3.8 3.8 3.8
France 2.0 3.3 2.8 4.8 4.5 3.8
Italy 3.6 2.2 4.0 3.4 3.8 4.0
Japan 2.3 4.3 2.8 2.8 5.3 3.8

∗ Notes: See notes to Table 3. The experiment reported on in this table uses an updated version of the Global VAR dataset

analyzed by Dees, di Mauro, Pesaran and Smith (2007). More specifically, quarterly forecasts are made for 5 variables including

GDP (y), inflation (p), equity returns (q), short-term interest rates (ρs), and long-term interest rates (ρl). The ex ante

forecasting period is 2021:Q4-2023:Q3, and predictions are made for 6 different countries and 4 different forecast horizons (i.e.

h=1,2,3,4). Tabulated entries are average "ranks" of our different models, constructed by comparing MSFEs by country and

forecast horizon, when averaged across all 5 variables. In our analysis, we compare 6 different models (i.e., PCA, CS, HT,

PCA+macro, CS+macro, and HT+macro). All models include an AR component, and up to 2 factors estimated using PCA,

with factors selected using the PCp2 statistic. PCA+macro, CS+macro, and HT+macro include lags of the 5 macroeconomic

variables as explanatory variables, rather than just lags of the target variable, with lags selected using the SIC. Summarizing,

model ranks are calculated for each variable (excluding deq for France and dp for Japan, due to data reliability issues for those

two variables) and each forecast horizon, and are averaged across all five variables to yield the average ranks reported in the

table. For complete details refer to Section 5.2
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